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The initial flow field of an incompressible, viscous fluid around a circular cylinder, 
set impulsively to move normal to its axis, is studied in detail. The nonlinear 
vorticity equation is solved by the method of matched asymptotic expansions. 
Analytic solutions for the stream function in terms of exponential and error 
functions for the inner flow field, and of circular functions for the outer, are 
obtained to the third order, from which a uniformly valid composite solution is 
found. Also presented are the vorticity, pressure, separation point and drag. 
These quantities agree with the numerical computations of Collins & Dennis. 
Extended solutions developed by Pad6 approximants indicate that higher tha n 
third-order approximations will yield only minor improvements. 

1. Introduction 
The analytic solution of the full Navier-Stokes equations for the flow field 

over an impulsively started circular cylinder is at present beyond our capabilities. 
I n  order to analyse the flow, one must resort to an iterative procedure. The 
method of matched asymptotic expansions was developed for a systematic 
treatment of such iteration. 

Previous theoretical investigations of the initial flow over an impulsively 
started circular cylinder at  finite Reynolds numbers consist notably of the work 
of Wang (1967) and of Collins & Dennis (1973a, b ) .  Wang applied the method of 
inner and outer expansions. He formulated the problem in the spirit of boundary- 
layer theory, by solving the two momentum equations in polar co-ordinates. 
Assuming the solution to proceed in power series of the normalized time, he 
derived the first two approximations, within which the pressure is constant 
across the boundary. In  the third approximation to be obtained, the pressure 
begins to vary across the viscous layer. Collins & Dennis (1973a) presented 
a somewhat different approach. They formulated the problem in the boundary- 
layer variables, and derived solutions for only the inner region. These were not 
matched with any outer solution, but adjusted to match the uniform flow far 
from the cylinder. They were expanded in powers of normalized time and 
boundary-layer variables. The first approximations were derived analytically, 
the succeeding were computed numerically to seventh order. Collins & Dennis 
(1973 b )  also numerically integrated the time-dependent Navier-Stokes equa- 
tions for flow past an impulsively started circular cylinder. Their numerical 
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solution is satisfactory initially, in agreement with their earlier boundary-layer 
results ( 1 9 7 3 4 .  It is also valid a t  later times, when separation has begun and the 
viscous layer thickens, but before the wake becomes asymmetric. 

In  the present work, the formulation consists of only one governing nonlinear 
equation, that of the vorticity. The troublesome pressure field, which is unknown 
apriori, is thus eliminated. As a consequence, the resulting vorticity equation is 
one order higher than the momentum equations. However, an integration with 
the matching condition between inner and outer flows will reduce the order by 
one. The inner flow is governed to all orders by a linear partial differential equa- 
tion, whose solution is related to the parabolic cylinder function. The outer flow is 
shown to be irrotational to the third order, governed by Laplace’s equation. This 
makes the solution of the outer flow field particularly simple: mere inspection of 
the matching condition. The gauge functions in the asymptotic expansion are 
found by iteration, rather than assumed a priori. Inner and outer solutions to 
third order, and the resulting composite solutions, are obtained. The flow pattern 
is depicted, from which separation and eddy formation behind the cylinder are 
discernible. The vorticity and the strength of the vorticity source on the cylinder 
surface are calculated and plotted. Also presented are the progression of the 
separation point, the pressure distribution on tho cylinder and the time history 
of drag. Pad6 approximants are used in an attempt to improve the results 
obtained. This seems to indicate that higher than third-order approximations 
add only minor corrections. 

2. Matched asymptotic expansions 
The governing vorticity equation for time-dependent, incompressible, viscous 

flow, Rosenhead (1963, p. 121), in non-dimensional form is 

(1) 
aw ---€V x (V x 0)  = €2ccv2w, 

where e = (U,T,,)/Z, a = (eRe)-l. (2) 

at 

In  (2), E,, To and U, are respectively the reference length, time and velocity, 
Re = (UoZo)/vo the Reynolds number. Hence, Re = $Rd, Rd = (ZUoro)/vo, the 
Reynolds number based on diameter. In our work, 2,is the radius roof the cylinder. 
For the initial phase of the flow, e is a small quantity. For moderately large 
Reynolds number, a is finite. Consequently, we may expand the solution to (1) 
in only one parameter, e. The original time variable may be recovered by the 
simple transformations 

(3) 

Here t* is the dimensional time, and T is a new non-dimensional time. 
In polar co-ordinates, define a stream function @ such that 

w ufj = -. 1 a7b =---  
* r aB’ ar (4) 
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The vorticity equation (1) then becomes 

It may be seen that, if the outer stream-function expansion consists of powers 8, 

then (5) with the initial condition of irrotationality gives 

Va@;= 0, n =  2 , 3  ,.... (7) 

I n  other words, the outer flow is irrotational to all orders of e. To be more general 
than (6), the outer expansion is assumed to be of the form 

I n  later matching procedures, the gauge functions &(e) will be found to be as 
in (24) and (32) : 

Therefore, to third order at least, the expansion (6) is valid and the outer flow 
remains irrotational, being governed by the Laplace equation (7). The leading 
term in the outer stream-function expansion is that of a potential uniform flow 
over a circular cylinder of unit radius : 

& ( E )  = en-1, n = 2,3. (9) 

9; = (r - r-1) sin 8. (10) 

+ t = O  as r+m, n=2 ,3 , . . , .  (11) 

pn = r-k[Alc(t)sink8+B,(t)coske], n = 2,3, .... (12) 

Since +; satisfies the uniform flow boundary condition at infinity, we require 

The solution to (7) satisfying condition (1  1) is 

k=l 

The coefficients A&) and Bk(t) wilI be determined by matching with the inner 
solution. The simple form of (12) will facilitate the solution for the outer flow 
field. 

In  the present singular perturbation problem, the region of non-uniformity 
near the cylinder should be stretched to unity order. Let the thickness of this 
region be A,(€), which vanishes as e vanishes. The proper stretching of the radial 
co-ordinate is then 

In order to magnify the inner-flow stream function Ti, which is a function of the 
stretched inner variable R, we set 

R = ( r -  i)/AI(c). (13) 

- 
p ( R ,  8, t )  = @(r, 8, t)/S(s). (14) 

40-2 
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By requiring that the tangential velocities inside and outside the inner region 
should be of the same order, we get, from (4), (13) and (14), 

&(s) = A,(€). (15) 

The inner expansion of the stream function is assumed to be of the form 

P(r, 8, t ;  E )  = X A,(€) PA(% O , t ) ,  
m=l  

in which A&) are the gauge functions to be determined in (27) and (36). 

3. First-order solution 

s vanish, we set 
Substituting the inner expansion (16) into the vorticity equation (5) andletting 

Setting A,(€) = e, we get the linear equation governing the first-order inner 
expansion : 

t&Rt - G G R R R  = 0- 

Integration of (17) with respect t o  R yields 

f i R t  - a E R R R  = f(8, t ) .  

(17) 

(18) 

(19) 

-. 

The no-slip boundary conditions on the cylinder are, from (4), 
-. 
$i (o ,d , t )  = 0, $&(0,8,t) = 0. 

The matching condition is that the tangential velocity at the edge of the inner 
region R - f w  approaches that in the outer region as r+ I. Employing the 
asymptotir principle (Van Dyke 1975, p. go), we obtain 

- 
$&(a, 8, t ,  = $%(I, 8, t ) ,  

f(8, t )  = +MI, 8, t )  - ae2+9m( 1,8, t )  = 0, 

(20) 

where +Fp is given by (10). Applying matching condition (20) to (18) gives 

(21) 

by virtue of (10). The governing equation (18) is now identical to that for the 
impulsively started plate, the Rayleigh problem, except that the local first-order 
outer velocity on the cylinder should be used instead of the constant impulse 
velocity. The solution t o  (18) with (21) subject to the conditions (19) and (20) is 

$iR = 2 erf 7 sin 8, +iR dR = 4(at)a 11.11 erf 7 - d( 1 - exp ( - T ~ ) ) ]  sin 8, 

where 

We note that, on the cylinder surface, the normal derivative of the tangential 
velocity from (22) is always positive for 0 < 8 c n. Therefore, the first-order 
expansion does not predict any flow separation. Equations (10) and (22) are the 
first-order solutions. 

$i = 
(22) 

q = R/[2(at)8]. (23) 

/ O R -  

- 
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4. Second-order solution 

with m = 1 in (16) and n = 2 in (8), we obtain 
Applying again the asymptotic matching principle (Van Dyke 1975, p. go), 

S2(e) = 8, $$( 1,0, t )  = - 4n-*(at)* sin 8. (24), ( 2 5 )  

( 2 6 )  

Comparison of (12) with (25 )  yields the second-order outer solution 

+!(r, 0, t )  = - 4 n f ( a t ) t  Y--1 sin 0. 

The contribution of ( 2 6 )  to the outer stream function is, through (3), 

e@ = - 4n- t (T/Re)4  r-1 sin 8. 

The effect is equivalent to that of a doublet, whose strength grows with the 
square root of time. The displacement is symmetric fore and aft of the circular 
cylinder, owing to the symmetry of the first-order inner solution (22). 

The second-order inner solution may be found by setting m = 2 in (16) and 
n = 2 in (8) in the matching, with $$ given by (26 ) .  We obtain 

A,(€) = e2, $g,(co, 0, t )  = - 2(B - 2n-*(at)*) sin 8. (27) 

-4 $mt - a$&m = 4{1- (erf 7)2 + 2n-* exp ( - y2) [ ? j ~  - erfc 1 - m-*( 1 - exp ( - y2))J) 

Substitution of (16 )  into ( 1) yields the second-order inner flow equation 

x sin 8 cos 8 + 2n-*(a/t)* ( I  + exp ( - y2)) sin 6. ( 2 8 )  

The no-slip boundary conditions are 
- 
+gR(o, e, t )  = 0, ~ ( o ,  e, t )  = 0. (29) 

The solution to (as), satisfying conditions (27)  and ( 2 9 ) ,  is 
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We have recovered Blasius's solution (Schlichting 1968, p. 400; Rosenhead 1963, 
p. 372) and Wang's correction for finite Reynolds numbers (Wang 1967). The 
first term in (30) is symmetric about the 90" radius, but the second is not; in fact, 
it is negative over the rear of the cylinder. (See Schlichting 1968, figure 15.1.) 
This part of the solution will cause thickening of the boundary layer at  the rear 
of the cylinder and, eventually, separation and back flow. The second-order 
solution consists of (26)  and (31). 

5. Third-order solution 
Using the asymptotic matching principle with m = 2 in ( l6) ,  n = 3 in (8) 

and the second-order solution (26) and (31), we get the third-order gauge function 
and the matching condition 

&(€) = €2, (32) 

(33) $!( 1,8,  t )  = -at sin 0 + 8t(crt)Q& ( 3 4 2  -- * - 9n * - l)sin8coso. 

Comparison of (12) and (33) determines 

gki = - d r - l  sin 8 + 8t(d)4nr-4 (34) 

The contribution of the third-order outer expansion to the outer expansion is, 
through (3), 

' 1 r-2sinocoso. (35) e2G = - (T/Re) r-lsin8+8T(T/Re)Br) ---- 

The first part is equivalent to a doublet with strength symmetrical around the 
top of the cylinder, the second is a quadrupole, the strength of which is no longer 
symmetrical around the top. This will cause displacement that is more pro- 
nounced at the rear of the cylinder. 

A correction is needed in the inner flow, to take care of the modification of the 
velocity at its boundary owing to the third-order outer flow. Matching the 
tangential velocities with m = 3 in (16) and n = 3 in (8) gives 

) (342 977 

A,(€) = e3, 

- 8 
$kR(a,8,t) = 3R2sin8-- (at)*Rsin8+atsinB 

7d 

sinBcos8. (36) ---t(at), ---- 16 
nt ( 3 4 2  9n 

Substituting the inner expansion (16) into the vorticity equation (1 I), eliminating 
the parts that correspond to (17) and (28) ,  and letting 8 vanish, we get the equa- 
tion for the third-order inner flow : 
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The boundary conditions are the matching conditions (36) and the no-slip 
conditions on the boundary, 

We integrate (37) and use the matching condition (36) to evaluate the constant 
of integration. The solution is 

-. 
= at sin Ofi(7) + 8t(at)* sin (3 cos Og(7) + 8t2[sin 8 cos2 Ofa(7) - sin30T8(7)], 

(40) 
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f3(7) = F3(7) - Q(2r4 + 3q2) erf3 7 

1 
3nni 

24nm 1677 

-- [ni ( I  +&) (72- 2) - 4r/] exp ( -  272) 

? ~ ~ ( 5 4 ? ~ +  1 1257)exp( -3r2)+-(4v4+ 943 12r2+3)erf,/3 7 

+ (g2+&) (4q4+  12q2+3) 

(4Oc) 
The third-order solution consists of (34) and (40). 

6. Composite solution 
Having an outer expansion valid in the outer region, and an inner expansion 

valid in the inner region, we can form a single composite solution which is 
uniformly valid throughout the whole flow field. We form the composite solution 
by summing the inner and outer expansions and subtracting out the common 
part. The common part is the matching quantity we derived in each of the 
matching procedures. Performing the composition to the third-order expansion, 
we get (see Van Dyke 1975, p. 94) 

3 
7 r B  

(7%- 8) erfc2 7 - - 7 exp ( - 72)  erfc 7 

29 

4 2 
3n 

-- exp (- q2) + ;exp ( - 2p2) 

rp2- erfc 7 - 3272erfcr +&7 exp ( - 72) 

IPTt 
Re4 

+8-sinBco~B 

+ 8T2[sin 8 cos2 Of3(?)  - sin3 BF&)], 
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4T) 
Re* 

@ = sin 8 (r - r-1) +-sin 8n-t (- r-1- nbj erfc 7 + exp ( - ~ 2 ) )  

6 ,* - r- l+ erfc q + 672 erfc r - -7 exp ( - 72) 

633 

4 11 
977 67d 

T278 
Re 

+ 8-sin 6 COB 8 - 1 - -)++ - exp ( -g2) erfcq 

Note that 
7 = (r  - 1) Retl2T.t. 

7. Flow properties 
The velocity profiles (41) and lines of constant stream function (42) for 

Re = 500 (Rd = 1000) and T = 1.0 are plotted in figure 1. As we shall see in 
figure 7, separations started before T = 0.4, and back flow occurs in the separated 
flow region. 



634 M .  Bar-Lev and H .  T. Yang 

FIGURE 1. Velocity profiles and streamlines st R, = 2Re = 1000, T = 1. 

77-0 
FIGURE 2 

n-e 
FIGURE 3 

FIGURE 2.  Vorticity distribution on the cylinder at Rd = 2Re = 00. 
FIGURE 3. Vorticity distribution on the cylinder at R, = 2Re = 10000. 

In the case of an impulsively started cylinder, the fluid is initially free of 
vorticity. As the cylinder moves through the fluid, vorticity is generated at the 
solid surface, shed and diffuses into the fluid. On the cylinder surface r = ro, the 
vorticitg is 

lo' ") Tsinocoso 
15 T i  +- -sin8-4 742---- 

271.4 Re4 ( 16 15n 
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7r-8 

FIGTJRE 4. Vorticity distribution on the cylinder a t  R, = 2Re = 1000. 

e 0 45 90 135 

T = 0.2 
Collins & Dennis (1973a, figure 3) 0 1.74 1.80 
Collins & Dennis (1973b, Sgure 13) 0 1.77 1.80 
Present 0 1.749 1.788 

Collins & Dennis (1973a, figure 3) 0 1.56 1.30 
Collins & Dennis (1973b, figure 13) 0 1.57 1.30 
Present 0 1-565 1.310 

T = 0.4 

T = 1.0 
Belcher et al. (1972, figure 1) 0 1.52 1.0 
Collins & Dennis (1973a, figure 3) 0 1-50 1.0 
Collins & Dennis (1973b, figure 13) 0 1.50 1.0 
Present 0 1.520 0.989 

0.73 
0.72 
0.733 

0.13 
0.11 
0.127 

- 0.79 
- 0.78 
- 0.78 
- 0.767 

TABLE 1. Comparison of the vorticity distribution oR;) z w(2Re)-* 
on the cylinder a t  Re = w 

e 0 45 90 135 

T = 0.2 
Collins BE Dennis (1973b, figure 11) 0 26.0 58.0 55.0 
Present 0 25.02 58-04 55.28 

Collins & Dennis (1973b, figure 11) 0 - 10.9 30.00 45.0 
Present 0 -18.26 32.45 44.20 

T = 1.0 

TABLE 2. Comparison of the vorticity distribution 
on the cylinder at Ed = 2Re = 1000 

180 

0 
0 
0 

0 
0 
0 

180 

0 
0 

0 
0 
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The vorticity distribution on the cylinder is plotted in figures 2-4 for various 
Reynolds numbers. Table 1 compares the vorticity distribution 

w ( e ) / @  = w(B)/Re* 

on the cylinder at Re = co of Collins & Dennis (1973 a, b )  with the present analytic 
results, at  T = 0.2, 0.4 and 1.0. For the case T = 1.0, the numerical computation 
of Belcher, Burggraf, Cooke, Robins & Stewartson (1972) is also included. The 
agreement is seen to  be very good. Table 2 compares the vorticity distributions 
w ( 8 )  also at  Rd = 2Re = 1000 for T = 0.2 and 1.0. It is seen that agreement is 
again very good at small times. When T = 1.0, where the present expansion is not 
expected to be valid, the agreement is less satisfactory, particularly in the rear 
separated flow region. A vortex sheet, represented by the singular first term, 
forms on the surface at the impulsive start T -+ 0. Later, the vorticity diffuses 
out into the fluid. The gradient of vorticity a t  the rear stagnation point, which is 
negative initially, grows positive, indicating separation and back flow. 

It is of interest to develop the vorticity gradient along the normal to the 
surface, which is the flow of vorticity per unit area per unit time out of the surface. 
This quantity, multiplied by -v, may be termed the strength of the local 
vorticity source S = - v(aw/ar),o. Normalizing S as 8 = U@3/ro, we get 

10843-89 +--") 128 sinecosze 
+-$R~~TP[(  301T 135nz 12 

The strength of the vorticity sources along the cylinder is plotted in figures 5 
and 6. Note that the higher the Reynolds number or the less viscous the Bow, 
the less is the decrease with time of the vorticity strength. For the initial time, 
the viscous-layer thickness is of order (vt)4, thinner for less viscous flow; 
then the vorticity source on the surface must adjust the velocity jump over 
a thinner layer. 

The separation point on the cylinder is the point a t  which the vorticity 
vanishes (which means that the streamlines close to the surface are no longer 
parallel to it) and the vorticity gradient along the cylinder is negative, indicating 
a normal flow away from the cylinder. To find the separation point, we set the 
vorticity on the cylinder (43) to zero. Differentiating with respect to the tangential 
co-ordinate 8, we see that the separation starts always at  the rear stagnation 
point. The progression with time of the separation point is plotted in figure 7 
for different Reynolds numbers. We observe that the separation angle tends 
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0 30 60 90 120 150 180 

T - e  
FIGURE 5. Strength of surface vorticity source at Rd = 2Re = 2000. 

FIGURE 6. Strength of surface vorticity source at Rd = 2Re = 200. 

asymptotically to some value which is, presumably, the steady separation angle. 
The lower the Reynolds number, the closer this angle to the rear stagnation 
point. The time of the initial separation a t  the rear stagnation point is plotted 
in figure 8. Alsoplotted for comparison are the curve of Wang (1967), which uses 
only the second-order expansion, and the two curves obtained numerically by 
Collins & Dennis (1973a,b). The third-order expansion curve is close to that 
predicted by Collins & Dennis, although somewhat lower. At Bd = 2Re = 500, 
the values of separation time found by Collins & Dennis are T, = 0.396 (1973 a) 
and = 0.394 (1973b). See Collins & Dennis (19733, table 3). Our analytic 
result is 0.365, which is in close agreement with the recent numerical result of 
0.37 obtained by Panikker & Lavan (1975). For Re+m, the second-order 
solution for the initial separation time is the same as that of Blasius, which was 
also obtained by Wang (1967), namely, 

T =  ( 2+-  :T)-' = 0.351. 
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100 

110 

120 

130 

140 

150 

160 

170 

180 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

T 
FIGURE 7. Progression of separation point. 

0.7 

0.6 

T 0.5 

0.4 

0.3 
lo6 105 103 102 10 

Re 

FIGURE 8. Time of initial separation. ---- , (i), (ii), Collins & Dennis (1973a, 6); 
-___ , second order expansion Wang (1967);-, third order expansion; - - -, Pad6 
approximant [2/2]. 
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180 166 I46 138 124 110 

Re = 
Collins & Dennis (1973a, 0.322 0.331 0.39 0.43 0.589 0.90 

Collins & Dennis (1973b, 0.322 0.33 0.39 0.42 0.59 1.10 

Sears & Telionis (1975, 0.351 0.36 0.40 0.45 0.60 1.11 

Present 0-322 0.330 0.389 0,438 0.602 1.089 

figure 2) 

figure 6) 

figure lo)? 

-f Trajectory of zero wall shear. 3 Telionis & Tsahalis (1974, p. 1496). 

TABLE 3. Comparison of progression of separation point at Re = 00 

The third-order solution is the same as that of Goldstein and Rosenhead, which 
was obtained by Collins & Dennis (1973a, (7.5))’ namely, 

752 2 1 6 , / 3 - 1 3 8 - ~ ) ~ ]  ( --- 512 11 21643-178 
= [ -(‘+&)+(i%?+ 1 5 ~  3 1 3 5 ~ ~  3 -I- 15n 

= 0.3195. 

The first term of Collins & Dennis (1973a (75)), or the denominator above multi- 
pliedbyP, is the additional term wo2(x, 0) of Collins & Dennis ( 1 9 7 3 ~ ) .  Thus, the 
inadequacy of Wang’s results is removed by the present third-order expansion. 
In fact, it is the senior author’s perception of this improvement that motivated 
the present study. Incidentally, the curve of Wang in Collins & Dennis (1973a, 
figure 1) should be displaced as in our figure 8. By the Pad6 approximant, the 
improved initial separation time for Re -+ 00 is a little shorter as shown in figure 8, 
contrary to the results of Collins & Dennis. The definition of the separation point 
in unsteady boundary-layer flow is currently much under discussion. (See Riley 
1975.) Since the present analysis is based on the full Navier-Stokes equations, 
the definition proposed by Sears & Telionis (1975) in unsteady boundary-layer 
equation solutions involving Goldstein singularities does not apply here. The 
definition given at the beginning of the paragraph is used for all Reynolds 
numbers. As Re -+ co, the separation point’s progression with time obtained 
analytically by the present third-order expansion is compared with that by 
Collins & Dennis (1973a, b )  in table 3. The agreement is excellent, especially a t  
small times, as expected. The trajectory of zero wall shear given in Sears & 
Telionis (1975), based on Telionis & Tsahalis (1974), also shows good agreement 
with the present results, except at the initiation of the zero wall shear. We did 
not encounter particular difficulty between 0.6 < T < 0.8, as reported in Sears & 
Telionis (1975) in the calculation of radial velocity at Re = 00. The comparison of 
the progression of the separation point a t  finite Reynolds numbers between 
Collins & Dennis (19733) and the present result is made in table 4. As expected, 
the higher the Reynolds number, the better the agreement. 

By manipulating the radial and tangential momentum equations, we can 
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e 180 170 160 150 140 130 120 110 

Re = 100, Rd = 200 
Collins & Dennis (19733, 0.445 0.46 0.49 0.54 0-64 0.88 1.4 

Present 0.401 0.408 0.433 0.479 0.561 0,717 1.100 1.923 
figure 6) 

Re = 500, Rd = 1000 
Collins &Dennis (1973b, 0,371 0.39 0.40 0.45 0.51 0.64 0.93 1.6 

Present 0.350 0.355 0.375 0.410 0.472 0.582 0.808 1.711 

TABLE 4. Comparison of progression of separation point at finite Reynolds numbers 

figure 6) 

derive an expression for the pressure coefficient based on the pressure at the for- 
ward stagnation point, 

Using (44), we get 

68 
Ci = [ 

- (28,/2 +% 157r - 2842) &] sin2 8 

2743-20 3 16 T3 -(%+ 6 2 3n*Re?t 
- -) - - (i - cos3 e). 

(45) 

The square-root time singularity in the second bracket of (46) is due, obviously, 
to  the impulsive start. 

The pressure coefficient Cg is plotted in figures 9 and 10 for several Reynolds 
numbers. In  order to perceive the tendency of the pressure distribution toward 
that at a later time, we plotted the curves up to a normalized time of 1.8. 
Although our expansion may not be valid a t  this time, it nevertheless indicates 
the basic behaviour of the pressure distribution. In  the limiting case, Re-+co, 
the pressure coefficient is identical to that of the potential flow, as expected. 

The drag on the cylinder has two parts, the form or pressure drag and the skin- 
friction drag. The pressure drag coefficient can be expressed as a vorticity 
quantity 

=- sin 0 136. 

Using the vorticity gradient on the cylinder from (44), we get 

15 T3 
CDp = 2n4 Re-*T-* + n 9 - - Re-1 - - - ( 2) 2n*Re% 

(47) 
10843-89 +--- 128 11 64 2743 - ll-T)] T* 

30n 135n2 12)+3(z5?' 30n 12 m' 
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0 

- 1  

-3 

-4 
0 30 60 90 120 150 180 

n-e 

FIGURE 9. Pressure coefficient at R, = 2Re = 20000. 

0 

-1 

c", - 2  

-3 

-4 
30 60 90 120 150 180 

n-e 
FIGURE 10. Pressure coefficient at R, = 2Re = 1000. 

The square-root singularity in time in (47) can be explained as the result of the 
impulsive nature of the cylinder motion. At the start of the motion, the cylinder 
displaces the fluid particles on the surface with infinite acceleration. The cylinder 
experiences, therefore, an infinite resistance of the fluid to its impulsive motion. 

Expressing also the skin-fraction drag as a vorticity quantity, and using (43), 
we get 

(w),  sin 8 &8 

n 15 T* 
Re 2 m4 

D, 2 Cq= -- 

= 27d TbRe-) +- +- 

At the start of the impulsive motion, a discontinuity in the tangential velocity 
exists on the surface. This discontinuity causes an infinite shear stress, and 
consequently gives rise to infinite drag, as indicated by the square-root singu- 
larity in (48). After the start, the vorticity diffuses, and the finite velocity jump 
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FIGURE 11. Pressure and skin-friction drag coefficients at R, = 2Re = 500. Q, Schwabe 
(1943). Panikker & Lavan (1075): - , CD,; - - -, C D f .  - - - -, C D p  and C D ~ ,  second 
order (Wang 1967); -O-O-, CD,, third order; - x - x - , C D ~ ,  third order. 

near the surface is spread over a small but finite thickness. The magnitude of the 
shear stresses reduces, and skin-friction drag decreases. We observe that the 
leading terms in (48) and (47) are identical, so that a t  the start of the motion 
the contributions of the skin-friction drag and the pressure drag to the total 
drag are equal. 

The time history of pressure drag (47) and of skin-friction drag (48) at Rcl = 
2Re = 500 are shown in figure 11, which is essentially Panikker & Lavan’s (1975, 
figure 6). It is seen that the third-order expansion agrees better than the second- 
order with their numerical solution. Their pressure drag reaches a minimum at 
T = 0.9, then rises because of the growth of separated flow region, and agrees 
with the first experimental point of Schwabe (1943). Since the present analytic 
solution is valid for T < 1, a t  Rd = 500 we could infer T < 0.5. On account of 
(2) and (3), for higher Reynolds number, T may be closer to 1, or even a little 
beyond. The total drag coefficient is 

adding (47) to (48 ) .  The time history of drag (49) at Rd = 2Re = 500 is plotted 
in figure 12, after Panikker & Lavan (1975, figure 7). It is seen that the present 
third-order solution is in excellent agreement with Collins & Dennis’s (1973a), 
extended. For T < 0.05, agreement between the present result and the numerical 
computation of Panikker & Lavan (1975) is good. Thenumericalvalueof Thoman 



Flozv over an impulsively started cylinder 643 

1.2 

1.1 

1 .o 

0.9 

0.8 

OD 
0.7 

0.6 

0.5 

0.4 

I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

T 

FIGURE 12. Drag coefficient at Rd = 2Re = 500. 0 ,  Thoman & Szewczyk (1969), 
R, = 600; - ---, Collins & Dennis (1973a); - , Panikker & Lavan (1975); ---, 
second order Wang (1967); -O-O-, third order. 

& Szewczyk (1969) is too high. The total drag rises at  T = 0.9 owing to the 
increase of pressure drag. This trend is also shown in other numerical computa- 
tions, except those of Jain & Rao (1969, figure 4), where the drag coefficient 
decreases monotonically with time. The drag coefficient for various Reynolds 
numbers is plotted in figure 13. The drag coefficients in the limiting case Re+m 
are plotted in figure 14. 

8. Pad6 approximation 
The flow properties we developed are presented as a truncated double power 

series in time and Reynolds number. Our interest is in the time change of those 
properties a t  a constant Reynolds number. We therefore fix the Reynolds number 
in those expressions, and let the series proceed in powers of T*. The maximum 
number of terms in the series is five. Since there are not enough terms to use the 
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T 

FIUURE 14. Drag coefficient at R, = ZRE = 03. 

various techniques of series improvement (Van Dyke 1974), we are left with the 
Pad6 approximants (Baker 1975). The highest Pad6 diagonal we can use is [2/2], 
which requires knowledge of the first five coefficients. 

The first two Pad6 diagonals for the power series 

X(E) = anen 
n=O 
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T 
RffmtE 15. Progression of separation point: Pad6 approximant [2/2]. 

are a0 u, + (a? - a, a,) € 

a, - U2" ' [W = 

[ao(a% - u2a4) fai(aia4 - aza3) + a ~ ( a t - ~ , a 3 ) ]  e2 + 
(at - a, a3) + (a, a, - u2u3) E + (u; - aza,) €2 

- 
The [2/2] Pad6 approximant was applied to (43) and equated to  zero. This series 
governs the progression of the separation point on the cylinder. The progression 
of the separation point on the cylinder is plotted in figure 15. Comparing the 
results with figure 7, there is close agreement for Reynolds numbers higher than 
500 or even 100. For Reynolds numbers below 500, the time for the initial 
separation at the rear stagnation point, as predicted by the Pad6 approximant, is 
later than that calculated by (43). The asymptotic steady-state separation angle 
is seen also to be somewhat closer t o  the rear stagnation point. 

The initial time of separation at the rear stagnation point is plotted against 
Reynolds number in figure 8. The second- and third-order expansions are plotted 
in the same figure. The Pad6 approximant is very close to the third expansion. 
It does predict somewhat shorter times of initial separation for Reynolds numbers 
higher than 500, and longer separation times for Reynolds numbers below 500. 
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The Pad6 approximant [1/1] was applied to the drag coefficient. The results 
are plotted in figure 1 1. The drag coefficient calculated by Pad6 approximants 
is somewhat lower. 

9. Conclusion 
The initial flow over an impulsively started circular cylinder was solved by 

using the method of matched asymptotic expansions to the third order. The 
solution should be valid for T = Uot*/ro -= 1, Re = Uoro/vo > 100. Because of (2) 
and (3), the solution may be stretched to 21 w 1 for higher Reynolds numbers. 

The two basic characteristics of the flow (the vorticity and the vorticity 
strength on the surface) were first derived, plotted and studied. At a finite time 
after the impulsive start, separation of the boundary layer starts a t  the rear 
stagnation point and progresses along the cylinder asymptotically to a final 
separation angle. The lower the Reynolds number, the longer the flow takes to 
start separating, and the closer to the rear stagnation point the final separation 
angle. Although the solution is not valid for small Reynolds numbers, figure 8 
seems to indicate the existence of a limiting Reynolds number, below which 
separation will not take place. 

Using the vorticity derivatives, the skin-friction drag, pressure drag, and 
pressure distribution on the cylinder were derived. All these quantities agree 
well with the computations of Collins & Dennis (1973a, b) .  (See e.g. figures 8,11, 
12; tables 1-4.) The skin-friction drag and pressure drag have the same magni- 
tude at  the start of the flow, which agrees with Collins & Dennis. The drag 
coefficient is compared with the recent numerical computation of Panikker & 
Lavan (1975). At Rd = 2, Re = 500, for T < 0.5, the agreement is good. 

The singular behaviour of flow properties a t  very small times could be treated 
from the viewpoint of kinetic theory as in Rayleigh’s problem. (See e.g. Yang & 
Lees 1956.) For large times, the present problem could be treated as indicated in 
Robins & Howarth (1972)) after Proudman & Johnson (1962). For intermediate 
times, one may have to resort to direct numerical computation. 

Pad6 approximants were used in an attempt to improve the results. The Pad6 
approximants agreed very well with the third-order expansion, indicating that, 
probably, only: minor improvements can be gained by calculating higher-order 
approximations. 

The authors wish to thank Professor H. K. Cheng for bringing to their atten- 
tion the question of unsteady boundary-layer separation points and the technique 
of Pad6 approximants. The senior author thanks Professor H. K. Cheng and 
Professor K. Stewartson for helpful discussions. 
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